某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。 现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
Input本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。 接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。 再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。Output对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1. Sample Input3 30 1 10 2 31 2 10 23 10 1 11 2
Sample Output
2-1
#include#include #include #include #include #include using namespace std;#define ll long longconst int inf = 0x3f3f3f3f;const int maxn = 1e4+8;int n, m, dis[maxn][maxn], len[maxn], s, e;bool sign[maxn];void dij(int start){ fill(len, len+n+1, inf); fill(sign, sign+n+1, 0); len[start] = 0; for(int i = 0 ; i len[miao]+dis[miao][j]) len[j] = len[miao]+dis[miao][j]; } }}int main(){ while(~scanf("%d%d", &n, &m)) { for(int i = 0; i x) dis[a][b] = dis[b][a] = x; } scanf("%d%d", &s, &e); dij(s); if(len[e] == inf)printf("-1\n"); else printf("%d\n", len[e]); } return 0;}